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Abstract 

We consider the design of a non-local MonteCarlo algorithm for SU(3) lattice systems 

according to the idea of embedding the degrees of freedom corresponding to the center of the 
group Z(3). As a crucial ingredient to reach this goal, we present a practical implementation 

of a cluster algorithm for Z(3) systems with general random pair interaction. 
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I. Introduction 

Developing non-local upgrade mechanisms for SU(N) lattice models proved to be 

a rather hard task, because of the impossibility to carry on a straightforward gen- 

eralization of Wolff’s embedding idea.[l] There are apparently no such algorithms 

available for SU(N) lattice systems, at present. The relatively small effort devoted 

to this goal has probably to do with the fact that the dynamics of gauge fields takes 

only a small part of the total computer time, and the feeling is that there is little to 

be gained in optimizing it. Still, large statistical errors on the gluon dynamics may 

result when large lattices will be used to explore more deeply the scaling region. We 

take the point of view that sometime it will pay to have an efficient algorithm for the 

pure gauge dynamics and we want to argue in this paper that a strategy similar to 

Brewer-Tamayo’s [3] embedding may possibly work, as suggested by Wolff [2]. We 

present some preliminary steps to be taken to develop such an algorithm, even if their 

true value will be appreciated (hopefully) only after these ideas will be implemented 

in a realistic calculation. In order to simplify the presentation, we explicitly cover the 

N=3 two-dimensional sigma-model, but there seem to be no obstructions to general- 

ize the idea to the case of four-dimensional QCD at finite temperature, which is the 

kind of real application we have in mind. According to ideas of Polyakov going back 

to the 705, it is precisely the center of the group which governs the deconfining tran- 

sition, hence the Z(3) degrees of freedom should be responsible for a critical slowing 

down near the critical temperature. 

In sect.11. we describe the simple embedding we have in mind for SU(3); in sect.111. 

we derive the algorithm and we give a few details on its implementation while in 

sect.IV. we present some preliminary numerical results. 

II. Z(3) embedding 

Embedding Z(3) degrees of freedom into a SU(3) model, like the non-linear sigma 

model, can be accompished by assigning a cross section of the fibre bundle Z(3) + 

SU(3) + SU(3)/2(3). For instance such a section may be chosen as 

v E SU(3) + (‘. u 
i 

c E Z(3) 
u E SU(3)/2(3) 
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lArg{TrU}l < a/3 (2.1) 

Since the bundle is non-trivial, the section is only defined up to a set of measure zero, 

but this is fine for our purposes. The action transforms as follows (here and in the 

following < ij > implies that i and j are nearest neighbours): 

S = c fRe{TrV!Vj} 
<ij> 

= C Rc{<it +TrUfUj} 
<ii> 

and it appears as a Z(3) model in the variables C with random couplings. In the 

gauge case, we would end up with a Z(3) lattice gauge theory with random coupling. 

Near the continuum limit the matrix lJ!Uj fluctuates around the identity, and the 

system is effectively ferromagnetic. 

To exploit this embedding to beat critical slowing down at the continuum limit one 

needs an efficient algorithm for the Z(3) degrees of freedom. While a cluster algorithm 

for Z(3) spin systems is well-known in the real-constant-coupling case (a special case 

of q-Potts model with q=3), the random coupling case requires some modification. A 

general scheme for local pair interaction has been devised by Niedermayer [4] and it 

covers the present situation. We are going to derive a cluster algorithm along a slightly 

different line of reasoning, but the outcome will be the same. Instead of concentrating 

on transition probabilities satisfying detailed balance, we shalI introduce an equivalent 

ensemble with bond variables as new degrees of freedom, like one does in the Ising 

model. There are two ways to define the action in terms of bond variables and these 

correspond to two special cases in Niedermayer’s approach. The resulting cluster 

dynamics is non trivial in the first case while clusters are statistically independent in 

the second case. 

III. The algorithm 

Let us set the notation: C E Z(3) is a generic spin variable, its values ranging on 

the set (l,w,~), where w = exp(2ni/3) . Th e action we consider is the following 

S = c Re{~iQ~} 
<ij> 

(3.1) 
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where i, j range over pairs of next-neighhours. 

The coupling constants Rij are subject to a limitation which is not essential for 

the algorithm to work, but will simplify the presentation, namely we assume that 

IArg{S&}l < 2x/3 (3.2) 

for all (i, j), a condition which is likely to be met near the continuum limit. Now let 

us write the partition function in the following way: 

Z = C JJ Zij 
( <ij> 

Zij = exp(PRe U&I)~C,~~ 

t exp(PRe {Wt))6(++ 

t exdPR= {%~I)&.c~ 

Ignoring a common factor n exp(PRe (a,}), we can rewrite Z as follows: 

’ = Z$ <II, (‘Cidj + Wj (3)6Cd,~(j + Wj (W)6(;,*(,) (3.3) 
3 

where 

Kj(Z) = exp(PRe {(z - 1) S$}) 

On each link ij let us define 

W;: = min(Wij(w), Wij(,s)) 

wit = max(Wij(w),W;j(L3)) (3.4) 

and b qj = w if W’ = W(w) 
c;r otherwise 

(3.5) 

Under the condition above on the phase of fl (Eq.3.2), it turns out that W< < I; 
as a consequence, if we rewrite Z;j as follows: 

Zj = 6k,(j + WG (1 - Jci,cj) t (Ws - W~)~C+,;,C~. (3.6) 
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we can introduce bond variables n;j as in Swendsen-Wang’s algorithm, to get either 

Z=~<~,{(sRj,l’~;,(j(l- ij) W< + 6mj,0[w; + (W; - tV2) 6<,,,;jo]} (3.7) 

or 

’ = C II {s”;js~[‘~;t~j (1 - WG) + 6,,,,!,cj (W$ - WG)] + J,,;-~w$} (34 
C,n <ii> 

As a first option we then have the following updating algorithm: first step, the 

bonds are switched on with probability (1 - Wi$), p rovided C = cj (this first step is 

identical to Swendsen-Wang’s). The second step is given by the spin update, which 

is governed by the term bnij,l, forcing the same spin value on each connected cluster. 

These cluster spin values are chosen according to a distribution Zs(u,t which takes 

into account cluster interaction which occurs at the boundaries. The effective action 

for the cluster dynamics can be extracted from the term involving bnij,o. Let C denote 

a generic cluster, cc its spin; then we have 

where 

Z ClUIL = pwc4 

w(k,b) = iEocfisC’ (W; t (W; - W;) 6cc,wjjb,) 
<ij> 

The clusters’ interaction dictated by this formula can be now treated as an ordinary 

lattice system, e.g. by a heat bath method. What we have realized here is a trans- 

formation from the original Z(3) lattice system to another Z(3) system indexed by 

clusters. The implementation which we have already tested (see next section) is sug- 

gested by Wolff’s single clusler algorithm. The assumption underlying such a choice 

is that in some equilibrium regime the existing spin values on the boundary of the 

cluster can be used to evaluate the probability distribution even without growing the 

other clusters. 

As for the second option, starting from Eq.3.8 the bonds are switched on with 
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probability 
l-W< if & = cj 
1-g if(;=Wij(j 

0 otherwise 
There is no interaction between clusters (which may be read from the fact that the 

coefficient 6,,,0 is [-independent), but the interaction among spins within a cluster is 

non trivial. Instead of trying to therm&x the system on each cluster, we can just 

apply a global rotation chosen independently at random on each cluster. Niedermayer 

showed that this move satisfies detailed balance and ergodicity is obviously satisfied 

since clusters with just one site are possible. 

The setup outlined here would not work in case Eq.3.2 is violated somewhere. It 

is however straightforward to modify the formulae to account for this. 

IV. Preliminary numerical results 

We have implemented the first option (single cluster) to simulate a two-dimen- 

sional Z(3) model with random coupling. The coupling nij is uniformly distributed 

in the region 

($ c Re{n} < 3) n (lArg{n}l < 7r/3). (4.1) 

In order to count sweeps in a fair way, we defined a sweep as consisting of an 

update on R followed by N,,il, cluster updates, with Nhit, adaptively chosen in such a 

way that N,,it. x < NC > x L’, where < NC > is the average cluster size and L is the 

lattice size. In this way the computer time for a sweep is essentially independent on 

p. The autocorrelation time ri,thas been measured for the total magnetization < C > 

using the formula given in [5]. We report the correlation length t for c Re {Crj} > 

projected at vanishing transverse momentum, together with Tintand the average linear 

size of the clusters. Data have been taken on a 128 x 128 lattice on several runs of 

5000 sweeps each (Tab.1) and on a 200 x 200 lattice with 2500 sweeps only (Tab.2). 

The numerical data show a clear sign of critical behaviour around p z 0.615. At 

the same time the autocorrelation time r;,*does not increase more than linearly in t, 

at least up to p x ,610; beyond this value t becomes a substantial fraction of the 

lattice size and ri,tstarts to grow more rapidly. To determine the dynamic critical 

exponent for the algorithm one needs a very high statistics, and our data are too 
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preliminary to get a reliable conclusion. The sharp rise in ri,tnear the transition, 

if confirmed, would mean that the algorithm is not as efficient as we would have 

expected, but it may still be of some practical value - since the actual values are not 

dramatically high. One also remarks that going to bigger lattices tends to improve 

the performance. 

V. Conclusions 

We have examined the feasibility of a cluster algorithm designed to embed Z(3) 

into SU(3) in the spirit of Brewer and Tamayo. Clearly most of the work is still to 

be done. We have to combine the present Z(3) algorithm with some local update 

mechanism for the SU(3)/Z(3) degrees of freedom. This should carefully deal with 

the coset condition 2.1 - a heat bath technique would probably be best suited. For 

the application to gauge theory one has to further modify the algorithm, but some 

progress was done recently on gauge Z(2) and U(1) systems, and also this problem 

will hopefully be overcome. 

What will the overhead be for such kind of algorithm, say in the study of the 

deconfining transition? Judging form recent progress in implementing cluster algo- 

rithms on massively parallel machines[6][7], the price to be paid should not be too 

high. 
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.560 

,580 

,600 

.602 
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.606 

.608 
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.612 - 
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Table 1: 128 x 128 

,:, 1 y; 1 J<qN.> 

3.0 1.0 5 

4.7 1.2 a 

5.2 1.3 a 

5.7 1.3 9 

6.3 1.4 10 

7.7 1.9 11 

Table 2: 200 x 200 

P 
.600 

.602 

.604 

.606 

.608 

.610 

.612 

.613 

.614 

4.9 1.2 8 

5.5 1.3 9 

6.2 1.5 10 

7.6 1.6 11 

i 

9.3 2.5 14 

18.0 12.0 23 

%25 x21 33 

032 x40 41 


